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S E L F - A D J U S T M E N T  E F F E C T S  IN A L A S E R  D R I V E N  B U R N I N G  

O. V. Klimov and A. A. Tel 'nikhin UDC 533.915:536.75 

The quasi-equilibrium dense discharge plasma at atmospheric pressure and temperature T .-~ 1 eV 
which is sustained by the radiation from a neodymium glass laser is the object of intensive investigations and 
finds numerous applications in engineering [1, 2]. The laser driven burning was obtained by Bunkin et aI. [3] 
for the first time. The subsequent investigations have shown that the discharge is of a threshold character 
related to the radiation intensity Ic (Ir .~ 10 MW/cm2). For I > Ir the discharge front propagates along 
the light channel at a velocity of the order of tens of meters per second toward both sides of the focus. 
The discharge plasma is optically transparent (the absorption coefficient is # ~ 10 -2 cm-1), its parameters 
(temperature and density) are, on average, constant in time and uniform in space within the light channel. 
The mean electron density in the plasma is ne ~ 2 �9 1017 cm -3, and the pressure is equalized in space owing 
to a subsonic propagation regime. The discharge wavefront velocity depends on the intensity of an external 
source and increases according to the law V I r v ~  as the threshold intensity Ir is exceeded severalfold. In the 
threshold region, one can observe interesting effects associated with fluctuations of the front velocity of the 
order of A V f  ,.., 1-2 m/sec. In this case, the front profile does not vary in shape until the complete stoppage. 
The temperature and density measurements performed by Bukatyi et al. [4] also indicate the complicated 
character of the motions in the discharge plasma, which is reflected in macroscopic fluctuations of the discharge 
parameters. 

The fist theoretical discharge model was proposed by Yu. P. Raizer [1]. In this model, he used the 
similarity between the burning of a Bickford fuse and the discharge motion, as in the subsequent models. He 
derived the correct dependence of the front velocity on the radiation intensity within this model, which is 
described by the one-dimensional nonlinear heat-conduction equation. 

In the present paper, we proceed from the gas-dynamic equations in which significant nonhydrodynamic 
energy-transfer mechanisms, namely, heat conduction and radiation, are taken into account in the description 
of the light-discharge properties. Ignoring the divergence of a light beam and taking into account the optical 
plasma transparency, we assume that the channel has a cylindrical symmetry, and the radiation flux does not 
vary with the depth of its penetration into the plasma. In addition, we assume that the major mechanism 
of energy losses is plasma self-radiation. Note that this is true for a sufficiently large width of the beam d 
(> 0.1 cm) [1, 2]. 

1. G o v e r n i n g  E q u a t i o n s  of  t h e  Discharge  M o d e l .  The description of the discharge properties is 
based on the following hydrodynamic equations for the fields of density p, velocity V, and temperature T: 

p t + V ( p V ) = 0 ,  p ( V , + ( V V ) V ) = - V p ,  T , + V V T = F + D A T .  (1.1) 

F = ( t t I  - r  D = a~/(cpp). (1.2) 

Here A is the Laplace operator, p is the pressure, and 

F = ( p I  - r  D = ee/(cpp), (1.2) 

where (I) is the energy-flux density of the plasma self-radiation, cp is the heat capacity under constant pressure, 
and m is the heat conductivity. Let the discharge propagate along the z axis. It then follows from (1.1) that 
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the steady-state motion of the discharge front obeys the following equations: 

poVz = O, YITz = F + DTz~. (1.3) 

It is known from the autowave theory [5] that  Eqs. (1.3) with the nonlinear function F(T)  and the 
monotonically varied first-order Frechet derivative OF/OT have solutions in the form of an oscillations-free 
front: 

Yf r v'~--D, (1.4) 

where 

0 ;  T=To, P----Po 
I ) =  ; (1.5) 

It(To, po )I - r To, Po ) 
F(To,Po) = = 0 (1.6) CpPO 

(To and P0 are the unper tu rbed  tempera ture  and density in the discharge). 
In s tudying the stability in the coordinate system related to the discharge, we give solutions in the 

form 

T = To + ST, p = p0 + ~p, V = ezV, (1.7) 

where ~T and /~p are small perturbat ions:  ~p/po << 1 and t~T/To << 1. Introducing the smallness parameter  
e ~ V/c << 1 (c is the velocity of sound), we retain in the equations only the second-order terms relative to e. 
Assuming the per turbat ions  to be adiabatic (w >> k2D, where w and k are the characteristic frequencies and 
wave numbers of the per turbat ions) ,  we write the function k as 

p = po + c26p + 5 - 1) dpo + pod 6T (1.8) 

where "7 is the adiabatic exponent  and /3  is the thermal-expansion coefficient. Subst i tut ing the solutions in 
the form (1.7) into (1.1) and taking into account (1.8), we obtain the governing equations of the model in the 
Boussinesq approximation (6p/po "~ e and 6T/To ,,, e 2) 

+ poV= = 

c 2 1 c 2 ( 6 p ~ 2 1  
Vt + - -  6p, = --5 (3' - 1) \~o'oJ = -- 5 (V2)' - ciI~6T" (1.9) 

P0 
~Tt = v6T + DA6T.  

Differentiating the first equation with respect to z and the second one with respect to t, we find that  

l [y2+( , r_ l )c2(6p~2 ] + c2 
(V~ + cVz)(Vt - c V z ) = - 5  ',~o/ J zt po (6pV)~z-c2Z(v6T+DAST)=" (1.10) 

We search for the solution of Eqs. (1.10) in the form of quasi-simple waves [6]. One can then make, with due 
accuracy, the subst i tut ion c3/Ot - cO/c3z = -2cO/Oz on the left-hand side of (1.10) and set 0 / 0 t  = cO/Oz, 
t~p/po = V/c, and ~T/To = (3' - 1) V/c on the right-hand one. After these transformations and the transition 
to the reference system moving with velocity c relative to the medium,  Eq. (1.10) takes the simpler form 

1 
lit = 5/3T0(3' - 1)(v + DA) 2 -23' VVz. (1.11) 

In the above relation, a wave that  is traveling in the positive direction along the z axis is described, the 
nonlinear and dissipative terms are of the same order, and t is "slow" t ime (t ---* t - z/c). 

2. S t a b i l i t y  of  a L i n e a r i z e d  S y s t e m .  We write Eq. (1.11) as follows: 

Vt - L(A)V + h(V, A), (2.1) 

816 



where L = (1/2)(7 - 1)flT0(u + DA) is the linear operator that  acts in space and in terms of which the 
function V(r, t) is defined, the te rm h(V, )~) incorporates the nonlinear character of the right-hand side of Eq. 
(1.i1), and A reflects the dependence of the solution on the problem parameters (v and D). 

We first search for solutions of the linear auxiliary problem 

Vt = L(,~)V. (2.2) 

Since system (2.1) is autonomous,  Eq. (2.2) allows solutions of the form 

V = u(r)  exp (At). (2.3) 

Substi tuting (2.3) into (2.2) and using the explicit form of the operator L in the cylindrical coordinate system, 
we have 

L K2 -= ~ (~' 
0 

Orr r 2 0 ~  2 

Supplemented by the appropriate boundary conditions, this equation defines the eigenvalue problem. 
For example, for the case of axial symmetry  with the boundary condition u(r)  = 0 for r = r0 (r0 is the radius 
of the light beam),  it is easy to find from (2.4) the following eigenfunctions and eigenvalues: 

u = J0 (k i r )  exp ( ik ,  z), k i  ~ 2.40/r0, ~ = ( 1 / 2 ) ( " / -  1)Zr0(u - (k ~, + k~)O). (2.5) 

Here J0(k.Lr) is the Bessel function and kz is the wave number.  
Thus, the solution of the linearized problem (2.2) is 

V(r, t) = au(r)  exp (At), (2.6) 

where u and )~ are determined by relations (2.5), and a is a constant.  One can easily notice that  the character 
of the solution depends on the eigenvalue of the parameter  )~ (or, what is the same, on the governing parameter 
v). For v/> k2D, instability arises in the system; the critical point 

v~ = (k ~, + k,~)cD, ~c = 0 (2.7) 

corresponds to a regime tha t  is intermediate between the asymptot ic  stability and instability of the system 
and determines the threshold condition for the existence of the discharge. It is impor tant  to note that  owing to 
(2.5) and (2.7), the unstable mode kc is completely determined by the system parameters  and characterizes the 
spatial per turbat ion length of a steady-state solution. Thus,  we have the mechanism of intrinsic-wavelength 
generation in an initially uniform system. One can expect that ,  for ,~ > ,~, this per turbat ion will determine 
the basic properties of the system [7]. 

3. E v o l u t i o n  of  a N o n l i n e a r  S y s t e m .  We return to an analysis of the dynamics of the system 
described by the nonlinear equation (2.1). We confine ourselves to the case of bifurcation of the solution near 
t:he critical point )~c (2.7). Since the condition 

d 
)~(v) (;~=~c) = (1 /2 ) ( " / -  1)f/T0 :~ 0 

is satisfied, in our case it follows from the general results of the self-adjustment theory [7] that  the solutions 
that  arise for )~ ~> )~c are stable and steady. 

This means that  we need to find the solution of the equation 

2 - "7 VV,. (3.1) L(,~)V + h(V, .~) = O, h ( Y )  - 2 

With allowance for the character of the nonlinearity, we find the solution of (3.1) as a series in the smallness 
parameter s: 

Y = eV1 + s2V2 exp ( ikzz)  + . . .  + c.c., (3.2) 
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in which, according to (2.6), we should set 

V1 = a(t)Jo(k• exp (ikzz), (3.3) 

where a(t) is a desired t ime-dependent  function. Substitution of the series (3.2) together with (3.3) offers the 
possibility of defining V2: 

V2 = - ( 2 ( 2  - 7) /3(7  - 1)3To)a2(t)J2o(kir)ikz exp (2ikzz). (3.4) 

Using the expansion (3.2) together  with (3.3) and (3.4) in Eq. (2.1), we find the equation that  defines the 
function a(t, R): 

at q- Ao(R - 1)a - aa 3 = O. (3.5) 

Here 

A0 = (1/2)(7 - 1)3Tore, R = rive, a = (2 - 7 ) 2 ( J 2 ) / 3 D ( 7  - 1)3:/'0, 
~o (3.6) 

l J 5 2 o  1 (j2) = r-~o (k•  = ~ J12(k• 
0 

Equation (3.5) with parameters  (3.4) has the well-known solution and describes the supercritical bifurcation 
of the system. For R > 1, this equation admits two solutions 

as (R)= +~A~~ ( R - 1 ) ,  (3.7) 

which are asymptotical ly stable and are realized in the characteristic t ime r m (1/2)A0(R - 1). The 
mathematical  reflection of the system's qualitative behavior, which is due to the bifurcation at the point 
Rc = 1, is the singularity leading to the non-analytical character of the solution in the vicinity of the critical 
point. 

The above analysis of the dynamics of the nonlinear system (2.1) shows that  the evolution of natural  
perturbations leads to the formation of coherent dissipative structures (DS) in the system, which are described 
by the formula V( r , t )  = a(t)Jo(kxr) exp (ikzz), where a(t) is the function subject to Eq. (3.5), and the 
eigenvalues of the parameters  are determined by relations (2.5) and (2.7). 

4. Ef fec t  of  R a n d o m  S o u r c e s .  In a real experiment,  the laser radiation can fluctuate, which, in 
principle, affects the dynamics of the problem. In view of this, we consider the effect of random forces without 
indicating their source. 

Note that  Eq. (3.5) has a formal similarity with the corresponding equations describing the second- 
order nonequilibrium phase transitions [8]. In fact, the singularity at the critical point Re = 1, which is 
connected with a transit ion of the system from one to another state, requires taking into account the effect 
of fluctuation forces. 

Assume that  a Lagrangian source with power Q~(t - t') = (F(t)F(t ')) ,  where 6(t - t') is the delta 
function, acts in system (3.5). The evolution equation of the system then takes the form 

at = X0(R - 1)a - aa 3 + F(t), (4.1) 

where F(t) is a random force. 
We introduce the function f (a,  t) in the "coordinate" space a(R). The Fokker-Plank equation, which 

describes the t ime variation in the distribution function f (a,  t) and the corresponding (4.1), takes the form 

Of(a, t) 02 f 0 
[(A0(R - 1)a - aa3)af], f f ( a )  da = 1 (4.2) = Q-5-  2 + 

In a steady state, the solution of this equation is 

f (a)  = C exp [-( L/2Q)(aa4 /2 - A0(R - 1)a2)]. (4.3) 
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For the distribution (4.3), there are two most probable values 

a, = +~ / -~  ( R -  1), (4.4) 

which coincide for Rc = 1. 

us calculate the mean square (a21 = J a2f(a) da. Using (4.3), we 
/ *  

Let find 

(a2> = Ao (R - 1), R > 1, (4.5) 
O" 

-~ F(3/4) 
(a2) = r (1 /4 ) '  R - -  1, (4.6) 

where F(3/4) and F(1/4)  are the gamma functions. Clearly, for R > 1 (far enough from Re), the squares of 
relations (3.7) and (4.4) coincide with (4.5); for R = Re, relation (4.6) characterizes in our case the r.m.s. 
fluctuations of the as-order parameter.  

We evaluate fluctuations in the critical point assuming that  the source of random forces are fluctuations 
of the laser radiation 6I(t)  [8]. Here the term (#I/pocp) (61/1) appears in the third equation in (1.1). 
Performing transformations which are similar to those used in the derivation of Eq. (1.11), we find 

( c#I ~2 1 2 (3I(t)M(t')) 3 ( t -  t'). 
Q6(t - t') = \pocpTo] 4(J0) 12 

Having subst i tuted this relation and the a value from (3.6) into formula (4.6), we estimate,  in order of 
magnitude, the level of fluctuations at the critical point Rc = 1: 

{a 2) ,,~ ( c# I / [ (2 -  "t)pocpTo])~('y- 1)13ToDtc({612)/I2). (4.7) 

Here tr is the typical t ime of laser-raAiation fluctuation i:orrelation, and (~I2)/I 2 is their relative level. 
We dwell upon the physical meaning of the relations derived above. The  field function V(r, t) describes 

the particle velocity in the plasma. In a laboratory coordinate system, this function is of the form of a traveling 
w a v e  

V = as(n)Jo(k• exp [-iwt + ik,(z - zi)], n > 1, 

where w = kzc is the sound-wave frequency and z I = Vyt is the front coordinate. With the use of the boundary 

= 0, this expression takes the form condition OV/Oz z=zl 

V(r, z) = Vf(R)Jo(kj.r ) cos [kz(z - zl) ] exp (- iwt);  (4.8) 

Vy(R) = ( ~ f ~ ( ' ~ -  1 ) /3To / (Z-7) )k •  1, n > 1. (4.9) 

In deriving (4.9), we have taken into account conditions (3.6) and (3.7) and performed the corresponding 
averagings over t ime and over the cross section of the plasma channel. Note that  it follows from (3.6) and 
(3.7) that  the dependence of the front velocity on the degree of supercriticality Vf r v / -~_  1, and the velocity 
profile, which is described by the function Jo(k• does not vary its shape (as noted by Bufetov et al. [2]). 
For R = 1, formulas (4.8) and (4.9) lose their value. In this state, the dynamics of the system is determined 
by the power of random sources, and relation (4.7) describes, in essence, random velocity oscillations near 
the zero value (this effect was experimentally supported in [2]). Note also that  relation (4.4) reflects the equal 
probability of the appearance of two fronts (leading and trailing) of discharge motion. 

We perform a quant i ta t ive estimation of the quantities for typical values of the problem parameters 
[1, 2]: plasma density p0 ~ 2-  10 -4 g /cm 3 under normal pressure, equilibrium electron tempera ture  To = 
Te ~ 1.3 eV, equil ibrium electron density ne ~ 2-  1017 cm -s,  # ~ 10 -2 cm -1, r0 ,~ 0.5 cm, B ~ 0.5, 
7 ~ 1.25, /3T0 ~ 1, D ~ 2 �9 l0 s cm2/sec, and c ~ 2 �9 105 cm/sec. We start with the determinat ion of the 
threshold energy characteristics of the pumping field. It follows from (2.7) and definitions (1.5) and (1.6) 
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that the minimum value of the field B(#I)c/pocpTo = k2D is reached if the condition (k:/kj.) 2 << 1 is 
satisfied. Substituting the typical values of the problem into this relation, we find the threshold radiation 
power Pc = rr~Ic = (2.4)2rrDpocpTo/B# ~ 1 MW. Under the same condition, with allowance for the wave 
adiabaticity (w > k2_tD), we calculate, from (4.8) and (4.9), the discharge front velocity V l = 20v/-ff- 1 m/sec, 
the level of density fluctuations of the particle number in the discharge plasma ~n/no .~ 10 -2, and the wave 
frequency v = w/2r  ,-, 10 kHz (fluctuations of the plasma parameters and discharge-induced sound oscillations 
with a given frequency were observed by Bukatyi et al. [4, 9] for the first time). We determine the behavior of 
the discharge front at the critical point R = 1 using (4.7). For ~/{~I)2/I 2 ,~ 10 -5 and tc "-- 10 -s sec, we find 

the level of discharge-front velocity fluctuations in the threshold domain ~ = k / ~  -~ 1 m/sec. 
5. Discuss ion of Resul t s .  Conclus ions .  We have derived, in the Boussinesq approximation, an 

equation that describes the evolution of the laser driven burning in a Nd laser-generated field. We have shown 
that at a definite (threshold) value of the external field, the hydrodynamic-type instability appears in the 
system [10], the role of the Rayleigh number being played by the relation R = g(I)/k2D, where g(I) is the 
characteristic frequency of the energy contribution to the discharge, which is parameter-dependent on the 
external field, D is the heat-diffusion coefficient, and kc is the wave number determined by the characteristic 
parameters of the system (the effects associated with viscosity 77 have been ignored, because rl/D << 1 in 
the discharge plasma [1]). The dynamics of the forming nonlinear sound wave with an axial symmetry and 
a slowly varying amplitude has been studied. It has been shown that the evolution of the envelope obeys 
the Ginzburg-Landau equation. The effect of random sources on the given system has been studied. The 
fluctuations that develop in the system have been shown to determine the threshold value of the pumping 
field and to show up as the macroscopic (directed) motion of the discharge. 

The region of applicability of the model considered is limited by the physical condition of optical 
transparency, i.e., the condition wi/wt << 1, where wl is the Langmuir frequency and tot is the electromagnetic- 
wave frequency (Nd laser), should be satisfied. Another limitation is connected with the level of laser radiation 
fluctuations 6I / I  .,, (V/c) 2 ,., 10 -4. As a rule, these conditions are satisfied. 

Realizations of the mathematical models in a physical situation (threshold power, velocity and profile 
of the front, level and frequency of fluctuations, front behavior in the critical region, and fluctuations of the 
discharge wavefront velocity AVI) are in qualitative and quantitative agreement with experimental data. 
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